A cold hydrological system in Gale crater, Mars

نویسندگان

  • Alberto G. Fairén
  • Chris R. Stokes
  • Neil S. Davies
  • Dirk Schulze-Makuch
  • Alexis P. Rodríguez
  • Alfonso F. Davila
  • Esther R. Uceda
  • James M. Dohm
  • Victor R. Baker
  • Stephen M. Clifford
  • Christopher P. McKay
  • Steven W. Squyres
چکیده

Gale crater is a 154-km-diameter impact crater formed during the Late Noachian/Early Hesperian at the dichotomy boundary on Mars. Here we describe potential evidence for ancient glacial, periglacial and fluvial (including glacio-fluvial) activity within Gale crater, and the former presence of ground ice and lakes. Our interpretations are derived from morphological observations using high-resolution datasets, particularly HiRISE and HRSC. We highlight a potential ancient lobate rock–glacier complex in parts of the northern central mound, with further suggestions of glacial activity in the large valley systems towards the southeast central mound. Wide expanses of ancient ground ice may be indicated by evidence for very cohesive ancient river banks and for the polygonal patterned ground common on the crater floor west of the central mound. We extend the interpretation to fluvial and lacustrine activity to the west of the central mound, as recorded by a series of interconnected canyons, channels and a possible lake basin. The emerging picture from our regional landscape analyses is the hypothesis that rock glaciers may have formerly occupied the central mound. The glaciers would have provided the liquid water required for carving the canyons and channels. Associated glaciofluvial activity could have led to liquid water running over ground ice-rich areas on the basin floor, with resultant formation of partially and/or totally ice-covered lakes in parts of the western crater floor. All this hydrologic activity is Hesperian or younger. Following this, we envisage a time of drying, with the generation of polygonal patterned ground and dune development subsequent to the disappearance of the surface liquid and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site

Background: Gale Crater is located at 5.3°S, 222.3°W (137.7°E) and has a diameter of ~155 km. It has b een a ta rget o f p articular i nterest d ue to the > 5 k m t all m ound o f layered material that occupies the center of the c rater. Gale Crater is currently one of four finalist landing s ites for the Mars Science Laboratory rover. Method: We used visible (CTX, HiRISE, MOC), infrared (THEMI...

متن کامل

Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound

17 A model for the formation and distribution of sedimentary rocks on Mars 18 is proposed. The rate–limiting step is supply of liquid water from seasonal 19 melting of snow or ice. The model is run for a O(10) mbar pure CO2 atmo20 sphere, dusty snow, and solar luminosity reduced by 23%. For these conditions 21 snow only melts near the equator, and only when obliquity &40◦, eccentricity 22 &0.12...

متن کامل

Synthesis of Akaganeite in the Presence of Sulfate: Implications for Akaganeite Formation in Yellowknife Bay, Gale Crater, Mars

Introduction: Akaganeite (β-FeOOH) is an Fe(III) (hydr)oxide with a tunnel structure usually occupied by chloride. Akaganeite has been recently discovered in a mudstone on the surface of Mars by the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments onboard the Mars Science Laboratory (MSL) Curiosity Rover in Gale crater [1, 2]. Akaganeite was detected together with...

متن کامل

Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater

[1] A kilometers‐thick sedimentary sequence in Gale Crater exhibits stratigraphic changes in lithology that are consistent with transitions in aqueous and climatic conditions purported to be global in scale. The sequence is divided into two formations, where the Lower formation exhibits a net transition in mineralogy from clay/sulfate to sulfate/oxide assemblages and is separated from the overl...

متن کامل

Wind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars

Gale Crater contains Mount Sharp, a ~5km thick stratigraphic record of Mars’ early environmental history. The strata comprising Mount Sharp are believed to be sedimentary in origin, but the specific depositional environments recorded by the rocks remain speculative. We present orbital evidence for the occurrence of eolian sandstones within Gale Crater and the lower reaches of Mount Sharp, inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014